skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lim, Seokbin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Through high-fidelity numerical simulation based on the lattice Boltzmann method, we have conducted an in-depth study on the heat and mass transport from an oblate spheroid neutrally suspended in a simple shear flow. In the simulation, the temperature and mass concentration are modeled as a passive scalar released at the surface of the spheroid. The fluid dynamics induced by the interaction between the carrier fluid and the suspended spheroid, as well as the resultant scalar transport process, have been extensively investigated. A coupled transport mechanism comprising several components of the flow around the oblate spheroid has been identified. The effects of the Reynolds number and the aspect ratio of the spheroid on the flow characteristics and scalar transport rate are examined. The variation of the nondimensional scalar transport rate suggests that the effect of spheroid shape on scalar transfer rate can be decoupled from the effects of Peclet and Reynolds numbers, which facilitates the development of a correlation of scalar transfer rate for oblate spheroids based on the well-developed correlations for a sphere. 
    more » « less